
+

Introduction to UDP and TCP

End-to-end process mapping, reliable
transmission and end-to-end congestion control

Additional contents by:©2012 Prof. Peterson and Bruce Davie, MKP, Elsevier, San Francisco, Cal. USA

Based on textbook Conceptual Computer Networks © 2013-2024 by José María Foces Morán
& José María Foces Vivancos

+
Sliding Window Protocol and Flow Control
Efficient reliable transmission

All rights reseved (C) by José María Foces Morán and José María Foces Vivancos4-oct-2019 2

+
Sliding Window Algorithm

n This algorithm breaks down the would-be large data block submitted by an application into sub-blocks.

n Each sub-block becomes the payload to a new TCP segment

n Each segment is encapsulated into a new IP packet

n The payload encapsulated into a segment is a block of application data which initial byte is pointed to by the Sequence Number from the segment’s header

n If a segment is successfully received at the destination TCP, then the receiver soon will send back a segment which ACK SN will represent that fact

n Other wise, after a certain algorithmically calculated time elapses, the sender will resend the original segment (ARQ)

n In-order delivery
n Reliable delivery

n Flow control

3

14-oct-2024All rights reseved 2024 (C) by José María Foces Morán and José María Foces Vivancos

+
CONTEXT. A TCP connection Firefox (Client) Apache Web Server

193.146.101.46
20.30.45.56

Internet

Write byte stream

TCP

Data

Data

Data

Transmit a segment

Transmit buffer Receive buffer

Read byte stream

TCP

Transmit buffer Receive buffer

Read a segment

Segment
Segment

Segment

Data

Segment Segment
SegmentSegment

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

4-oct-2019All rights reseved (C) by José María Foces Morán and José María Foces Vivancos

4

+
Example of Sliding Window

All rights reserved 2024 © by José María Foces Morán and José María Foces Vivancos 14-Oct-2024

5

+
TCP Flow Control
n Sending Receiving side (S) informs Receiving

Sending side (C) about its remaining buffer
space

n In this situation, C will adapt its pace of
transmission accordingly
n The number of bytes sent within the current Rtt

n To this purpose, S uses a TCP header field
known as Advertised Window Size (AWS) to
inform C about its remaining buffer space

n AWS (Advertised Window Size) may reach 0

n In that situation C will send zero-data segments
from time to time just for causing S to send an
ACK containing an update of its AWS
n Some implementations send ZeroWindowProbes

periodically, every 5 sec
n Others space ZeroWindowProbes exponentially

AWS

Based on textbook Conceptual Computer Networks
© 2013-2018 by José María Foces Morán
& José María Foces Vivancos

4-oct-2019All rights reseved (C) by José María Foces Morán and José María Foces Vivancos

6

+
TCP Flow Control

n Sending Receiving side (S) informs Receiving
Sending side (C) about its remaining buffer space

n In this situation, C will adapt its pace of
transmission accordingly
n The number of bytes sent within the current Rtt

n To this purpose, S uses a TCP header field known
as Advertised Window Size (AWS) to inform C
about its remaining buffer space

n AWS (Advertised Window Size) may reach 0

n In that situation C will send zero-data segments
from time to time just for causing S to send an ACK
containing an update of its AWS
n Some implementations send ZeroWindowProbes

periodically, every 5 sec
n Others space ZeroWindowProbes exponentially

AWS

193.146.101.46
20.30.45.56

Internet

Write byte stream

TCP

Transmit a segment

Transmit buffer

Read byte stream

TCP

Receive buffer

Receive a segment

Segment
Segment

Segment

Segment AWS=4 bytes

Free buffer
space =
4 bytes

Data

Data

C

S

AWS

4-oct-2019All rights reseved (C) by José María Foces Morán and José María Foces Vivancos

7

+ TCP sliding window

All rights reseved (C) 2020-2024 by José María Foces Morán and José María Foces Vivancos

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Complete
Data Stream

Bytes
sent and

acknowledged
Bytes

sent and
not yet

acknowledged

effective
window = 4

Bytes not
yet written
into the

 send buffer

Window Size advertised by RECEIVER
AWS = 6

Bytes that
could be sent
right away

if TCP
state allowed

17 18 19

transmitter

20 21 22 23

Bytes written into
the send buffer

that
DON'T fit into
the window yet

24 25

Retransmission
Queue SizeState variable

snd.una
14-oct-2024

8

© Send Sequence Space from RFC 793 (A verbatim copy).

+
When does a TCP transmit?
Nagle’s algorithm

All rights reseved (C) by José María Foces Morán and José María Foces Vivancos4-oct-2019 9

+
Triggering Transmission

n How does TCP decide to
transmit a segment?
n TCP supports a byte stream

abstraction

n Application programs write
bytes into streams

n It is up to TCP to decide that
it has enough bytes to send a
segment

193.146.101.46
20.30.45.56

C S

Internet

Read byte stream
Write byte stream

TCP

Data
Data

Data
Data

Data

Transmit a segment

Transmit buffer
Data

Data

Data

Data

Receive buffer

Read byte stream
Write byte stream

TCP

Data
Data

Data
Data

Data
Transmit buffer

Data

Data

Data

Data

Receive buffer

Read a segment

Segment Segment
Segment

Based on textbook Conceptual Computer Networks
© 2013-2018 by José María Foces Morán
& José María Foces Vivancos

4-oct-2019All rights reseved (C) by José María Foces Morán and José María Foces Vivancos

10

+
Triggering Transmission

Assuming that the other end’s window is sufficiently large. TCP transmits the next segment
available in the transmit buffer if any one of these conditions holds true. TCP will always
attempt coalescing bytes from the transmission buffer into full segments (MSS)

a. The bytes in the send buffer are >= MSS even if no ACK pending

b. Push operation

c. An ACK that advances snd.una is received

- The segment is transmitted even if the resulting segment length is < MSS

14-oct-2024

11

All rights reseved 2024 (C) by José María Foces Morán and José María Foces Vivancos

+
Silly Window Syndrome

n If TCP makes up arbitrarily small segments, the receiver will receive many of them
and then it will be forced to provide an ACK to each, thereby coaxing the transmitter
to transmit the next (snd.nxt) bunch of bytes of whatever length

n This vicious circle of send small segment/ack squanders network resources
because the encapsulating segments/packets header lengths remain constant (at
least 20 + 20 bytes) despite the payloads being ever tiny: Inefficiency

n Known as the Silly Window Syndrome

n Can be avoided by:
n Nagle’s algorithm (Send side)

n Window control (Receive side)

14-oct-2024

12

All rights reseved (C) by José María Foces Morán and José María Foces Vivancos

+
Nagle’s Algorithm

- If no ACK is expected, then transmit any byte size available

- Transmit again only when an advancing ACK is received

13

14-oct-2024All rights reseved 2024 (C) by José María Foces Morán and José María Foces Vivancos

+
Nagle’s Algorithm

14

14-oct-2024All rights reseved 2024 (C) by José María Foces Morán and José María Foces Vivancos

+
Nagle’s Algorithm

15

14-oct-2024All rights reseved 2024 (C) by José María Foces Morán and José María Foces Vivancos

+
Nagle’s Algorithm

16

14-oct-2024All rights reseved 2024 (C) by José María Foces Morán and José María Foces Vivancos

+Nagle’s alg.

14-oct-2024All rights reseved 2024 (C) by José María Foces Morán and José María Foces Vivancos

+
TCP retransmissions
Adaptive RTO estimation

All rights reseved (C) by José María Foces Morán and José María Foces Vivancos4-oct-2019 18

+
If a segment is lost, it must be retransmitted

n When should the segment be retransmitted?

n TCP uses two complementary retransmission mechanisms

n 1. Schedule a timer when the first segment is to be sent:
Retransmission TimeOut (RTO)
n After RTO expires: Retransmit all segments from

snd.una

n 2. If 3 ACKs are received for the same sequence number,
the segment at snd.una was lost and must be
retransmitted immediately: 3-DUP

n After 3-DUP: Fast Retransmit of only the lost segment

n RTO and 3-DUP are complementary mechanisms

A B

Segment is lost

193.146.101.46
20.30.45.56

Lost segment: no Ack

X

No ack
sent back

Segment retransmitted
Wait for how long?

Based on textbook Conceptual Computer Networks
© 2013-2018 by José María Foces Morán
& José María Foces Vivancos

19

4-oct-2019All rights reseved (C) by José María Foces Morán and José María Foces Vivancos

+
Retransmissions in TCP

n If a segment is lost, it will have to be retransmitted

n If the ACK to a segment is lost, the original segment
would have to be retransmitted, however, if more
segments follow the ACK, their cumulative ACK will
acknowledge the data acknowledged by the missing
ACK thereby rendering the retransmission of the
original data needless.

n Upon transmission of a segment, a Retransmission
Timer is started with a countdown value of RTO sec

n RTO must be set so that the stability of Internet is
honored and unnecessary transmissions are avoided
as long as it is possible
n What value should be assigned to RTO

(Retransmission TimeOut)?

A B

Segment

Rtt

193.146.101.46
20.30.45.56

Ack

Correct transmission + Ack

A B

Segment is lost

193.146.101.46
20.30.45.56

Lost segment: no Ack

X

No ack
sent back

Segment retransmitted
Wait for how long?

Based on textbook Conceptual Computer Networks
© 2013-2018 by José María Foces Morán
& José María Foces Vivancos

20

4-oct-2019All rights reseved (C) by José María Foces Morán and José María Foces Vivancos

+
The RTO should be proportional to the
Estimated Rtt

n What value should be
assigned to RTO?

n Proportional to the
connection’s Estimated Rtt

n How small or big?

Based on textbook Conceptual Computer Networks
© 2013-2020 by José María Foces Morán
& José María Foces Vivancos

25-Oct-2020All rights reseved (C) by José María Foces Morán and José María Foces Vivancos

21

+
Then, how is EstimatedRtt computed?

n EstimatedRtt depends on:

n Past values of EstimatedRtt (80-90%)

n Last RttSample taken (20-10%)

n When an Ack is received, a new RttSample
is taken

n New EstimatedRtt is computed

A B

Segment

Rtt

193.146.101.46
20.30.45.56

Ack

Correct transmission + Ack

Rtt is measured
here: RttSample

Based on textbook Conceptual Computer Networks
© 2013-2018 by José María Foces Morán
& José María Foces Vivancos

4-oct-2019All rights reseved (C) by José María Foces Morán and José María Foces Vivancos

22

+
Then, how is EstimatedRtt computed?

n The recursive formula assigns a higher
weight to the past history of EstimatedRtt

n Weighted Average

n α= 0.8 – 0.9

n 1 – α= 0.2 – 0.1

n This function behaves like a Low Pass
Digital Filter

n Will somewhat suppress the highest
samples of Rtt (RttSample)

A B

Segment

Rtt

193.146.101.46
20.30.45.56

Ack

Rtt is measured
here: RttSample

EstimatedRtt[n + 1] = α · EstimatedRtt[n] + (1 - α) · SampleRtt[n]

Current value of EstimatedRtt

New value of EstimatedRtt[n + 1]
RTO = 2·EstimatedRtt[n+1]

Based on textbook Conceptual Computer Networks
© 2013-2018 by José María Foces Morán
& José María Foces Vivancos

4-oct-2019All rights reseved (C) by José María Foces Morán and José María Foces Vivancos

23

+
Computing EstimatedRtt: an example

n Assume a TCP connection in a specific time point has a value of EstimatedRtt of 150ms and
that the next three samples of Rtt (SampleRTT in ms) are: 130, 180 and 39,2 ms. What’s
the value of SRTT (The next value of EstimatedRtt, also known as Smoothed RTT)? Assume
parameter α = 0,9 and that the original TCP adaptive retransmission algorithm holds.

n a. 150 ms

n b. 180 ms

n c. 140 ms

n d. 135 ms

n e. A value other than those above

Based on textbook Conceptual Computer Networks
© 2013-2018 by José María Foces Morán
& José María Foces Vivancos 4-oct-2019All rights reseved (C) by José María Foces Morán and José María Foces Vivancos

24

+
Computing EstimatedRtt: an example

n SampleRTT in ms = {130, 180, 39.2}

n α = 0,9

n Initial EstimatedRtt = 150 ms

EstimatedRtt[n + 1] = α · EstimatedRtt[n] + (1 - α) · SampleRtt[n]

n EstimatedRtt[1] = 0.9 · 150 + 0.1 · 130 = 148 ms

n EstimatedRtt[2] = 0.9 · 148 + 0.1 · 180 = 151,2 ms

n EstimatedRtt[3] = 0.9 · 151,2 + 0.1 · 39.2 ≈ 140 ms

n Tick answer c. (140 ms)

Based on textbook Conceptual Computer Networks
© 2013-2018 by José María Foces Morán
& José María Foces Vivancos

4-oct-2019All rights reseved (C) by José María Foces Morán and José María Foces Vivancos

25

+
Computing RTO = 2 · EstimatedRtt: an example

n Estimated Rtt results = 140 ms
RTO = 2 · EstimatedRtt

n RTO = 2 · 140ms = 280 ms

Based on textbook Conceptual Computer Networks
© 2013-2020 by José María Foces Morán
& José María Foces Vivancos

26

All rights reseved (C) 2020-2024 by José María Foces Morán and José María Foces Vivancos
14-oct-2024

+
What happens if RTO is not properly estimated?

n RTO is too short

n Timer will fire too soon

n Transmitter will retransmit a segment
needlessly

n If RTO had been long enough,
retransmitting the segment would have
not been necessary

A B

Segment

193.146.101.46
20.30.45.56

Ack

RTO too short

Segment
retransmitted

Timeout timer started with

RTO seconds countdown

RTO

Tim
eout fir

es t
oo ea

rly
Ack is coming

Based on textbook Conceptual Computer Networks
© 2013-2018 by José María Foces Morán
& José María Foces Vivancos

4-oct-2019All rights reseved (C) by José María Foces Morán and José María Foces Vivancos

27

+
What happens if RTO is not properly estimated?

n RTO is too long

n Timer will fire too late

n Transmitter will retransmit a segment
after an execessively long time

n Receiver will receive the segment too
late

n Performance will suffer

n If RTO had been shorter, the receiver
would have not wasted so much time
waiting for the missing segment

A B

Segment

193.146.101.46
20.30.45.56

Ack lost

RTO too long

Segment

Timeout timer started with

RTO seconds countdown

RTO = EstimatedRtt[n+1]

Timeout timer fires too late

Wasted time

X

Based on textbook Conceptual Computer Networks
© 2013-2018 by José María Foces Morán
& José María Foces Vivancos

4-oct-2019All rights reseved (C) by José María Foces Morán and José María Foces Vivancos

28

+
What’s the Rtt when retransmissions occur?

n PROBLEM: In this situation, how can
EstimatedRtt be calculated?

n Recall: RTO = 2 · EstimatedRtt !

n Solution: Karn/Partridge algorithm A B

Segment

193.146.101.46
20.30.45.56

Ack

RTO too short

Segment
retransmitted

Timeout timer started with

RTO seconds countdown

RTO

Tim
eout fir

es t
oo ea

rly
Ack is coming

SampleRtt?

What is the right RttSample?

Based on textbook Conceptual Computer Networks
© 2013-2018 by José María Foces Morán
& José María Foces Vivancos

4-oct-2019All rights reseved (C) by José María Foces Morán and José María Foces Vivancos

29

+
What’s the Rtt when retransmissions occur?

n PROBLEM: In this situation, how can
EstimatedRtt be calculated?

n Recall: RTO = 2 · EstimatedRtt !

n Solution: Karn/Partridge algorithm
A B

Segment

193.146.101.46
20.30.45.56

Ack lost

RTO too long

Segment retransmitted

Timeout timer started with

RTO seconds countdown

Timeout timer fires too late

Wasted time

X

Ack

SampleRtt?

What is the right RttSample?

RTO

Based on textbook Conceptual Computer Networks
© 2013-2018 by José María Foces Morán
& José María Foces Vivancos

4-oct-2019All rights reseved (C) by José María Foces Morán and José María Foces Vivancos

30

+ Karn/Partridge Algorithm

n Do not sample RTT when
retransmitting

n Simply, double timeout
(TO) after each
retransmission:

n RTO[n+1] = 2 · RTO[n]

Based on textbook Conceptual Computer Networks
© 2015-2020 by José María Foces Morán
& José María Foces Vivancos

25-Oct-2020All rights reseved (C) by José María Foces Morán and José María Foces Vivancos

31

+
Karn/Partridge Algorithm

n An ACK represents the correct receipt of a past segment

n It does not mean “this transmission was correct”

Based on textbook Conceptual Computer Networks
© 2013-2018 by José María Foces Morán
& José María Foces Vivancos

4-oct-2019All rights reseved (C) by José María Foces Morán and José María Foces Vivancos

32

+
Karn/Partridge Algorithm: complications

n KP does not consider the variance of SampleRtt

n If variance is low, then EstimatedRtt can be better trusted
n And RTO can be equated to EstimatedRtt, up front

n RTO ≈ EstimatedRtt

n However, if variance is high:
n RTO != f(EstimatedRtt)

4-oct-2019All rights reseved (C) by José María Foces Morán and José María Foces Vivancos

33

© Morgan Kauffmann Publ. Co Larry
Peterson and Bruce Davie, “Computer
Networks”

+
Jacobson/Karels Algorithm: Account for variance
in SampleRtt

n SampleRTT is same as before

n Difference = SampleRTT − EstimatedRTT

n EstimatedRTT = EstimatedRTT + (× Difference)

n Deviation = Deviation + (|Difference| − Deviation)

n TimeOut = μ × EstimatedRTT + × Deviation
n where based on experience, μ is typically set to 1 and is set to 4. Thus, when the

variance is small, TimeOut is close to EstimatedRTT; a large variance causes the deviation
term to dominate the calculation.

© Morgan Kauffmann Publ. Co Larry Peterson and Bruce Davie, “Computer Networks” 4-oct-2019

34

+
Protecting against Wraparound

n SequenceNum: 32 bits long

n AdvertisedWindow: 16 bits long
n TCP has satisfied the requirement of the sliding window algorithm that the sequence

number space be twice as big as the window size

n 232 >> 2 × 216

© Morgan Kauffmann Publ. Co Larry Peterson and Bruce Davie, “Computer Networks” 4-oct-2019

35

+
Protecting against Wraparound

n 32-bit sequence number space

• The sequence number used on a given connection might wraparound

• A byte with sequence number x could be sent at one time

• Later, a second byte with the same sequence number x could be sent

n Packets cannot survive in the Internet for longer than the MSL (Max. Segment
Lifetime)
• MSL is set to 120 sec

• We need to make sure that the sequence number does not wrap around within a 120-
second period of time

• Depends on how fast data can be transmitted over the Internet

© Morgan Kauffmann Publ. Co Larry Peterson and Bruce Davie, “Computer Networks” 4-oct-2019

36

+
Protecting against Wraparound

© Morgan Kauffmann Publ. Co Larry Peterson and Bruce Davie, “Computer Networks” 4-oct-2019

37

+
Keeping the Pipe Full

n 16-bit AdvertisedWindow field must be big enough to allow the sender to keep the
pipe full

n Clearly the receiver is free not to open the window as large as the
AdvertisedWindow field allows

n If the receiver has enough buffer space
n The window needs to be opened far enough

to allow a full delay × bandwidth product’s worth of data
n Assuming an RTT of 100 ms

© Morgan Kauffmann Publ. Co Larry Peterson and Bruce Davie, “Computer Networks” 4-oct-2019

38

+
Keeping the Pipe Full

Required window size for 100-ms RTT
© Morgan Kauffmann Publ. Co Larry Peterson and Bruce Davie, “Computer Networks” 4-oct-2019

39

+
The basics of Internet congestion
When excessive network delay compromises service

© 2016 José María Foces Morán

+
Basic structure of an IP Router

n At this moment, the output link, receives traffic from three input links

n The output link, when demand is high, queues packets in a buffer
n Increases the delay undergone by each packet
n In the limit, when the link is congested, it begins to drop packets (Packets get lost)

All rights reseved (C) 2020-2024 by José María Foces Morán and José María Foces Vivancos
14-oct-2024

+
Queue length: Little’s Law

If t is sufficiently large:

§ N = λ·Ta

§ The average queue length is given by the product of average packet rate and the average residence time

§ The interarrival time is given a by a Poisson probability distribution A(t) = P(interravival time <= t)

§ Applies to a variety of queue disciplines, not only FIFO

§ Input probability distribution

All rights reseved (C) 2020-2024 by José María Foces Morán and José María Foces Vivancos
14-oct-2024

+
Power curve of a netowrk

n As the offered load increases, the ratio

Throughput/delay also increases

n Offered load

n Achieved throughput/delay (T/d)

n A time point comes when the T/d flats and the begins

to decrease as offered load keeps increasing

n This is due to the increasing delay at each router
© Morgan-Kaufmann 2012, Prof. L. Peterson and Bruce Davie

All rights reseved (C) 2020-2024 by José María Foces Morán and José María Foces Vivancos
14-oct-2024

+
Bottleneck link at an IP router

n The bottleneck link limits the maximum number of segments present in the network

n Product 2BD: B is the bandwidth of the bottleneck link and 2D is the Rtt

(C) 2016 José María Foces Morán

+
TCP, congestion control

All rights reseved (C) 2020-2024 by José María Foces Morán and José María Foces Vivancos
14-oct-2024

+
How TCP discovers the end-to-end capacity of a
TCP connection

n TCP needs to discover how many packets/sec can be injected into the network,
safely

n With a limited packet loss

All rights reseved (C) 2020-2024 by José María Foces Morán and José María Foces Vivancos
14-oct-2024

+
AIMD: Additive Increase, Multiplicative Decrease

n TCP needs to discover how many packets/sec can be injected into the network, safely

n Without packet loss

n The effective TCP’s transmit window becomes =MIN (CongestionWindow, AdvWindow)

n CW = CongestionWindow

© Prof. Levis, Stanford University

All rights reseved (C) 2020-2024 by José María Foces Morán and José María Foces Vivancos 14-oct-2024

+
How discovers network capacity
n Slow Start (SS)

n Probe for network capacity by growing CW (Congestion window)
CW = 2 * CW each Rtt

n Initially, CW = 1

n 3-DUP causes transition to CA (Congestion Avoidance) with CW = SSthrsh / 2

n TO (Timeout) causes SS to start again

n Linux implements TCP Reno and CUBIC congetion control

© Prof. Levis, Stanford University
© Prof. Larry Peterson and Bruce
Davie

(C) 2016 José María Foces Morán

3-DUP
3-DUP

TO

SS

CA
CA

SS

+
Reno, Fast Retransmit and Fast Recovery

n Fast Retransmit:

n Upon a 3-DUP the transmitter will retransmit the missing segment, only

n Fast Recovery
n Also, artificially increase CW = CW + 3 to compensate for the 3-DUP that didn’t advance

LastByteAcked and which, therefore, could not be used to spur the transmitter to transmit 3 new
segments

n Use the remaining, upcoming ACKS to keep the transmission pace

n NO Slow Start in Reno upon 3-DUP

(C) 2016 José María Foces Morán

+

(C) 2015 José María Foces Morán

+

4-oct-2019 All rights reseved (C) by José María Foces Morán and José María Foces Vivancos 51

