
+External Data Representation and
Marshalling

Information in programs consists of data structures

Information in messages consists of sequences of bytes

Data structures must be before transmission

All rights reserved © 2014-2019 by José María Foces Morán & José María Foces Vivancos
1

+
Remember Little endians and big endians and
Network Byte Order?

• Sockets
• ntohs() ntohl()

• htons(), htonl()

• Integers span multiple bytes in memory
• 16-bit integers span 2 bytes
• 32-bit integers span 4 bytes
• The receiver must honor the same byte ordering used by the sender, otherwise, caos!

• The Network format for integers is Network Byte Order
• Translate integers to Network Byte Order before transmitting
• Translate from Network Byte Order to the receiving hardware ordering before using the received data

• Marshalling of an integer consists of consistently sending its contituent bytes so that the receiver can
recover the same integer that was sent

• Likewise, Complex data types must be marshalized: Objects, Classes, Interfaces, etc.

All rights reserved © 2014-2019 by José María Foces Morán & José María Foces Vivancos

2

+
Marshalization in Java
Java object serialization

• In Java RMI, objects and primitive values may be passed as arguments and return
values from remote method invocations

• One object’s class passed as an argument to a remote method must implement

java.io.Serializable
• This interface has no methods (It’s a “marker interface”)

• Allows instances of a class to be serialized

• ObjectOutputStream

All rights reserved © 2014-2019 by José María Foces Morán & José María Foces Vivancos

3

+
Marshalization in Java
Java object serialization

Serialization: Flattening an object into a serial form suitable for transmission or disk storage

Deserialization: Reinstating an object from its serialized byte stream

• In Java, the deserializing process has NO previous knowledge of the types of the objects included in the serialized form

• The serialized form itself contains information about the serialized objects

All rights reserved © 2014-2019 by José María Foces Morán & José María Foces Vivancos

4

+
Marshalization in Java
Java objects contain references to other objects

A Java object contains primitive values AND object references

• When the object is serialized all values are serialized

• When the object is serialized all its object references are serialized

• References are serialized as Handles

• Handles are references to other objects within the serialized format

• Serialization is a recursive procedure

• Each class is assigned a Handle and is written only once to the stream

All rights reserved © 2014-2019 by José María Foces Morán & José María Foces Vivancos

5

+
Marshalization in Java
Java objects primitive-type instance values

• int, char, boolean, etc

• These are written to the output stream in a portable data format by using methods
of ObjectOutputStream:
• writeInt(), writeChar(), writeBoolean

• UTF-8 (UNICODE Transformation Format)

• Unicode 1-byte representation for ASCII

• Serialization is normally performed by middleware

• Ocassionally the app programmer may have to write serialization
• Consult the Java Tutorial (Serialization) for further details

All rights reserved © 2014-2019 by José María Foces Morán & José María Foces Vivancos

6

+

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 4.9
Indication of Java serialized form

The true serialized form contains additional type markers; h0 and h1 are handles (references to other objects)

Serialized values
Person

3

1984

8-byte version number

int year

5 Smith

java.lang.String
name:

6 London

h0

java.lang.String
place:

h1

Explanation

class name, version number

number, type and name of
instance variables

values of instance variables

• Person p = new Person(“Smith”, “London”, 1984);

7

+
Marshalization in Java
Java Reflection in Serialization

• Reflection: Ability of a class of reporting its properties
• Which methods it has

• Which fields it has

• Which constructors

• Reflection allows us to carry out Serialization in a completely generic manner
• With no previous knowledge about the properties of any object

• No need to have its source code

• Serialization uses Java Reflection to find out the name of an object’s class to be
serialized, its types and its values

All rights reserved © 2014-2019 by José María Foces Morán & José María Foces Vivancos

8

+
Marshalization in Java
Java Reflection in DeSerialization

1. The class name in the serialized form is used to CREATE a NEW CLASS

2. Create a new constructor with arguments from serialized form

3. The constructor is executed to create the new object and its instance variables
from the serialized form

All rights reserved © 2014-2019 by José María Foces Morán & José María Foces Vivancos

9

+
Marshalization in Java
Extensible Markup Language (XML)

• Defined by W3C

• A markup language
• Textual encoding for text itself and its structure

• Structured WEB documents

• HTML -> Appearance of web pages
• XHTML is html compatible with XML

• XML -> Structured documents for the web

• Data in XML
• Markup strings, tags

• Define the logical structure of a document

All rights reserved © 2014-2019 by José María Foces Morán & José María Foces Vivancos

10

+
Marshalization in Java
XML instance file example

<person id=“12345678”>

<name> Pedro </name>

<familyname> Pérez </familyname>

<year>1984</year>

<!– a comment -->

</person>

All rights reserved © 2014-2019 by José María Foces Morán & José María Foces Vivancos

11

+
Marshalization in Java
Uses of XML

• Clients consume Web Services by exchanging XML data with the WS point of access
• Marshalling with XML

• Also, Web Services interfaces are specified in XML

• Other uses include data archiving and retrieval

12

+
Marshalization in Java
Extensible

• HTML tags are fixed

• Users can make their own tags in XML
• Tags need be published so interacting programs can communicate

• CORBA CDR is not self-describing

• Because both interacting entities must have prior knowledge of the information being
exchanged

• To resolve conflicts with naming of tags and provide meaning:
• Namespaces

13

+

14

