External Data Representation and
Marshalling

Information in programs consists of data structures
Information in messages consists of sequences of bytes

Data structures must be before transmission

rights reservea

Remember Little endians and big endians and
Network Byte Order?

. Sockets
ntohs() ntohl()
htons(), htonl()

- Integers span multiple bytes in memory
16-bit integers span 2 bytes
32-bit integers span 4 bytes
The receiver must honor the same byte ordering used by the sender, otherwise, caos!
The Network format for integers is Network Byte Order
Translate integers to Network Byte Order before transmitting
Translate from Network Byte Order to the receiving hardware ordering before using the received data

- Marshalling of an integer consists of consistently sending its contituent bytes so that the receiver can
recover the same integer that was sent

- Likewise, Complex data types must be marshalized: Objects, Classes, Interfaces, etc.

All rights reserved © 2014-2019 by José Maria Foces Moréan & José Maria Foces Vivancos

Marshalization in Java
Java object serialization

- In Java RMI, objects and primitive values may be passed as arguments and return
values from remote method invocations

- One object’s class passed as an argument to a remote method must implement
java.io.Serializable

- This interface has no methods (It's a “marker interface”)
- Allows instances of a class to be serialized
- ObjectOutputStream

All rights reserved © 2014-2019 by José Maria Foces Moréan & José Maria Foces Vivancos

Marshalization in Java
Java object serialization

Serialization: Flattening an object into a serial form suitable for transmission or disk storage
Deserialization: Reinstating an object from its serialized byte stream

- InJava, the deserializing process has NO previous knowledge of the types of the objects included in the serialized form

- The serialized form itself contains information about the serialized objects

annotateProxyClass

protected void annotateProxyClass(Class<?> cl)
throws IOException

Subclasses may implement this method to store custom data in the stream along with descriptors

defaultWriteObject for dynamic proxy classes. ,
public void defaultWriteObject() wrltelnt
throws IOException |
Write the non-static and non-transient fields of the current class to this stream. This may only be publ ic void writelnt (int val)
called from the writeObject method of the class being serialized. It will throw the NotActiveException throws IOE xcept ion

if it is called otherwise.

Throws: Writes a 32 bit int.

IOException - if I/O errors occur while writing to the underlying outputstream

All rights reserved © 2014-2019 by José Maria Foces Moréan & José Maria Foces Vivancos

Marshalization in Java
Java objects contain references to other objects

A Java object contains primitive values AND object references

When the object is serialized all values are serialized

When the object is serialized all its object references are serialized

References are serialized as Handles

Handles are references to other objects within the serialized format

Serialization is a recursive procedure

Each class is assigned a Handle and is written only once to the stream

All rights reserved © 2014-2019 by José Maria Foces Moréan & José Maria Foces Vivancos

Marshalization in Java
Java objects primitive-type instance values

int, char, boolean, etc

These are written to the output stream in a portable data format by using methods
of ObjectOutputStream:

- writelnt(), writeChar(), writeBoolean
- UTF-8 (UNICODE Transformation Format)
- Unicode 1-byte representation for ASCII

Serialization is normally performed by middleware

Ocassionally the app programmer may have to write serialization

- Consult the Java Tutorial (Serialization) for further details

All rights reserved © 2014-2019 by José Maria Foces Moréan & José Maria Foces Vivancos

+ _
Figure 4.9
Indication of Java serialized form

- Person p = new Person(“Smith”,

“London”,

Serialized values
Person 8-byte version number hO
int java.lang.5tring | java.lang.String
3 i year name: place:
1984 5 Smith 6 London h

1984);

Explanation
class name, version number

number; type and name of
instance variables

values of instance variables

The true serialized form contains additional type markers; hO and h1 are handles (references to other objects)

Instructor’ s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5§
© Pearson Education 2012

Marshalization in Java
Java Reflection in Serialization

- Reflection: Ability of a class of reporting its properties
- Which methods it has
- Which fields it has

« Which constructors

- Reflection allows us to carry out Serialization in a completely generic manner
- With no previous knowledge about the properties of any object

- No need to have its source code

- Serialization uses Java Reflection to find out the name of an object’s class to be
serialized, its types and its values

All rights reserved © 2014-2019 by José Maria Foces Moréan & José Maria Foces Vivancos

Marshalization in Java
Java Reflection in DeSerialization

1. The class name in the serialized form is used to CREATE a NEW CLASS
2. Create a new constructor with arguments from serialized form

3. The constructor is executed to create the new object and its instance variables
from the serialized form

All rights reserved © 2014-2019 by José Maria Foces Moréan & José Maria Foces Vivancos

Marshalization in Java
Extensible Markup Language (XML)

Defined by W3C

A markup language
- Textual encoding for text itself and its structure
- Structured WEB documents

HTML -> Appearance of web pages
- XHTML is html compatible with XML

XML -> Structured documents for the web

Data in XML
- Markup strings, tags

- Define the logical structure of a document

All rights reserved © 2014-2019 by José Maria Foces Moréan & José Maria Foces Vivancos

Marshalization in Java
XML instance file example

<person id="12345678">
<name> Pedro </name>
<familyname> Pérez </familyname>
<year>1984</year>
<l—a comment -->

</person>

All rights reserved © 2014-2019 by José Maria Foces Moréan & José Maria Foces Vivancos

Marshalization in Java
Uses of XML

- (lients consume Web Services by exchanging XML data with the WS point of access
- Marshalling with XML

- Also, Web Services interfaces are specified in XML

- Other uses include data archiving and retrieval

Marshalization in Java
Extensible

HTML tags are fixed

Users can make their own tags in XML

- Tags need be published so interacting programs can communicate

CORBA CDR is not self-describing

- Because both interacting entities must have prior knowledge of the information being
exchanged

To resolve conflicts with naming of tags and provide meaning:

- Namespaces

