
STREAM SOCKETS
THE INTERFACE TO THE TCP PROTOCOL

V 1.5 26/11/19All rights reserved © 2019 José María Foces Morán and José María Foces Vivancos 22

Datagram socket C/S model

V 1.4 All rights reserved © 2019 José María Foces Morán and José María Foces Vivancos

Client
processes

Internet

Datagram
socket of
each client

Datagram
socket
of
server

Single
Server
Process

V 1.5 26/11/19All rights reserved © 2019 José María Foces Morán and José María Foces Vivancos 23

Datagram socket C/S model

• One server is started
listening on a port

• Creates one Datagram Socket

• Many UDP clients Access it

• All traffic from all
clients is received by this
single socket

• This single socket will
pass the traffic from all
clients to the server
process

Client
processes

Internet

Datagram
socket of
each client

Datagram
socket
of
server

Single
Server
Process

V 1.5 26/11/19All rights reserved © 2019 José María Foces Morán and José María Foces Vivancos 24

Stream socket C/S model

Internet

Stream
socket of
each client

Client
processes

Connected
sockets

Passive
socket

TCP connection

Single
Server
Process

V 1.5 26/11/19All rights reserved © 2019 José María Foces Morán and José María Foces Vivancos 25

Stream socket C/S model

• Server process creates
passive stream socket

• Welcome socket

• Passive stream socket
accepts new connection
requests

• Creates a new connected
socket for each client

• Delegate socket

• Each connected socket is
handled by a new server
thread

Internet

Stream
socket of
each client

Client
processes

Connected
sockets

Passive
socket

TCP connection

Single
Server
Process

V 1.5 26/11/19All rights reserved © 2019 José María Foces Morán and José María Foces Vivancos 26

Stream Sockets: The interface to TCP

• TCP is connection oriented

• The client contacts the
server and both establish
the parameters of the
communication

• This might resemble the
dialing from a phone to
another phone

Berkeley Sockets5 5 Berkeley Sockets

network, internet
V 1.5 26/11/19All rights reserved © 2019 José María Foces Morán and José María Foces Vivancos 27

TCP connection created by enacting 3-way
handshake

• A typical TCP connection is
established by having the
Client and the Server
Exchange 3 messages:

• C -> S: SYN

• S -> C: ACK and SYN

• C -> S: ACK

SERVER
(Stream
Socket)

CLIENT
(Stream
Socket)

SYN

SYN and ACK

ACK + Data

Connection
established

Connection
indication

Connection
requested

Connection
acknowledged

Time

V 1.5 26/11/19All rights reserved © 2019 José María Foces Morán and José María Foces Vivancos 28

The multiplexing keys at work in TCP

• Each connection represents
a bidirectional flow
between two processes

• The Client (C)

• The Server (S)

• Each process creates a
socket that has a full
sockaddr_in

• IP

• Port

• Therefore, the TCP mux key
is comprised of four
numbers

• Client IP

• Client Port

• Server IP

• Server Port

TCP

4

IP3

Applications

7

TCP segment

IP Packet

Demux key is:
(Src Ip, Dst Ip, Src port, Dst port)

proceso proceso proceso proceso proceso

5
Sesión
(Sockets)

GDT

V 1.5 26/11/19All rights reserved © 2019 José María Foces Morán and José María Foces Vivancos 29

Example about mux keys in TCP

• Server is started at TCP
port 80

• Client connects with server

• Its local port is 1200

• The TCP multiplexing key is

• 193.146.99.163

• 80

• 201.1.2.3

• 1200

• It is used in the C stack
and in the S stack for
locating the C process and
the S process respectively

TCP
4

IP3

Applications
7

1
0

2
4

8
0

3
5
8

1
5
6

pro
ces
o

pro
ces
o

web
server pro

ces
o

pro
ces
o

5
80

Session
(Sockets)

TCP
4

IP3

Applications
7

1
0

2
4

1
2
0
0

3
5
8

1
5
6

pro
ces
o

pro
ces
o

firefox
pro
ces
o

pro
ces
o

5
1200

Session
(Sockets)

internet

193.146.96.163 201.1.2.3

(193.146.96.163, 80, 201.1.2.3, 1200) Mux/Demux key for TCP

V 1.5 26/11/19All rights reserved © 2019 José María Foces Morán and José María Foces Vivancos 30

Server finished
With client’s

request

Stream
socket
lifecycle

V 1.5 26/11/19

All rights reserved © 2019 José María Foces Morán and José María Foces Vivancos

31

Client Server

socket()

bind()

listen()

request

Server finished
With client’s
requestclient finished

socket()

response

Socket becomes a
Welcome socket W

accept()

connect()

W

bind()

W

[SYN] [ACK/SYN] [ACK]

D

Delegate socket D
Created (Connected)

C

Client socket
Created

write()

read()

write()read()

close() close() Delegate socket
Closed

Welcome Socket
Still ready for
New connections

W

Not strictly
necessary

C

Client socket
Connected

C

C

D

D

Reliable data
Transfer

Stream socket
Created

Socket address
Applied

W

C

• RFC 793 specifies TCP

• TCP state diagram represents
the state changes of stream
sockets

• Citing RFC 793, Closed is a
”fictional” state

• Listen applies to the Welcome
Socket only

• Estab is the state the
connected sockets are in when
they Exchange Data. The
Sliding Window algorithm
governs reliable data
transfer

• State changes are caused by a
socket receiving a legitimate
and expected protocol
message, e.g., SYN

• The receiving socket, in
general, also sends some
response protocol message,
e.g., ACK-SYN after receiving
SYN

Verbatim copy of RFC 793 TCP State diagram in pg. 23

V 1.5 26/11/19

All rights reserved © 2019 José María Foces Morán and José María Foces Vivancos

32

TCP socket state
diagram

socket() call for a stream socket

• Create a Stream socket (TCP):

• #include <sys/socket.h>

• fd = socket(domain, type, protocol);

• Domain: AF_INET; AF_INET6

• Type: SOCK_DGRAM, SOCK_STREAM

• Protocol: 0

V 1.5 26/11/19

All rights reserved © 2019 José María Foces Morán and José María Foces Vivancos

33

Client Server

socket()

bind()

listen()

request

Server finished
With client’s
requestclient finished

socket()

response

Socket becomes a
Welcome socket W

accept()

connect()

W

bind()

W

[SYN] [ACK/SYN] [ACK]

D

Delegate socket D
Created (Connected)

C

Client socket
Created

write()

read()

write()read()

close() close() Delegate socket
Closed

Welcome Socket
Still ready for
New connections

W

Not strictly
necessary

C

Client socket
Connected

C

C

D

D

Reliable data
Transfer

Stream socket
Created

Socket address
Applied

W

C

bind() call for the
Welcome socket

• Server

• socketAddress.sin_family =
AF_INET;

• int port = atoi(argv[1]);

• socketAddress.sin_port =
htons(port);

• socketAddress.sin_addr.s_addr =
INADDR_ANY;

• …

• bind(

• welcomeSocket,

• (struct sockaddr *) &socketAddress,

• sizeof (socketAddress)

•);

• #include <sys/socket.h>

•
int bind(int fd,

• const struct sockaddr *addr,

• socklen_t addrlen);
V 1.5 26/11/19

All rights reserved © 2019 José María Foces Morán and José María Foces Vivancos

34

Client Server

socket()

bind()

listen()

request

Server finished
With client’s
requestclient finished

socket()

response

Socket becomes a
Welcome socket W

accept()

connect()

W

bind()

W

[SYN] [ACK/SYN] [ACK]

D

Delegate socket D
Created (Connected)

C

Client socket
Created

write()

read()

write()read()

close() close() Delegate socket
Closed

Welcome Socket
Still ready for
New connections

W

Not strictly
necessary

C

Client socket
Connected

C

C

D

D

Reliable data
Transfer

Stream socket
Created

Socket address
Applied

W

C

listen() call for the
Welcome socket

• Server

• #include <sys/socket.h>

• listen(welcomeSocket, 5);

• Sets welcomeSocket as a welcome
socket and sets the length of the
queue of completed connections
(The backlog) to 5.

• As the welcome socket receives
each TCP connection request it
stores each completed connection
request in the backlog queue.

• A later call to accept() on the
welcomeSocket will extract the
completed connection on the queue
head and turn it into a fully
functional delegate socket.

• This doc. was obtained from $ man
listen in a kernel which version
is greater than Linux 2.2

V 1.5 26/11/19

All rights reserved © 2019 José María Foces Morán and José María Foces Vivancos

35

Client Server

socket()

bind()

listen()

request

Server finished
With client’s
requestclient finished

socket()

response

Socket becomes a
Welcome socket W

accept()

connect()

W

bind()

W

[SYN] [ACK/SYN] [ACK]

D

Delegate socket D
Created (Connected)

C

Client socket
Created

write()

read()

write()read()

close() close() Delegate socket
Closed

Welcome Socket
Still ready for
New connections

W

Not strictly
necessary

C

Client socket
Connected

C

C

D

D

Reliable data
Transfer

Stream socket
Created

Socket address
Applied

W

C

listen() call for the
Welcome socket

• Server

• #include <sys/socket.h>

• listen(welcomeSocket, 5);

• Sets welcomeSocket as a welcome
socket and sets the length of the
queue of completed connections
(The backlog) to 5.

• As the welcome socket receives
each TCP connection request it
stores each completed connection
request in the backlog queue.

• A later call to accept() on the
welcomeSocket will extract the
completed connection on the queue
head and turn it into a fully
functional delegate socket.

• This doc. was obtained from $ man
listen in a kernel which version
is greater than Linux 2.2

V 1.5 26/11/19

All rights reserved © 2019 José María Foces Morán and José María Foces Vivancos

36

Passive
socket

Queue of completed
Connections

listen()

socket()

Syn

Ack-Syn

Ack

accept()
Delegate
socket

accept() call for the
Welcome socket

• Server

• #include <sys/socket.h>

• int delegateSocket = accept(

• welcomeSocket,

• (struct sockaddr *)
&clientAddress,

• &addressLength

•);

• - welcomeSocket must be in the
listen state

• - accept() extracts the connection
on the queue head and turn it into
a fully functional delegate
socket. This socket allows
reliable bidirectional data
transfer

V 1.5 26/11/19

All rights reserved © 2019 José María Foces Morán and José María Foces Vivancos

37

Client Server

socket()

bind()

listen()

request

Server finished
With client’s
requestclient finished

socket()

response

Socket becomes a
Welcome socket W

accept()

connect()

W

bind()

W

[SYN] [ACK/SYN] [ACK]

D

Delegate socket D
Created (Connected)

C

Client socket
Created

write()

read()

write()read()

close() close() Delegate socket
Closed

Welcome Socket
Still ready for
New connections

W

Not strictly
necessary

C

Client socket
Connected

C

C

D

D

Reliable data
Transfer

Stream socket
Created

Socket address
Applied

W

C

All rights reserved © 2019 José María Foces Morán and José María Foces Vivancos

Passive
socket

Queue of completed
Connections

listen()

socket()

Syn

Ack-Syn

Ack

accept()
Delegate
socket

connect() call for the
Client socket

Client: connection to server

• struct sockaddr_in server;

• server.sin_family =
AF_INET;

• server.sin_port =
htons(port);

• server.sin_addr.s_addr =
inet_addr(ipAddress);

• int r = connect

• (

• sock,

• (struct sockaddr *) &server,

• sizeof (server)

•);

V 1.5 26/11/19

All rights reserved © 2019 José María Foces Morán and José María Foces Vivancos

38

Client Server

socket()

bind()

listen()

request

Server finished
With client’s
requestclient finished

socket()

response

Socket becomes a
Welcome socket W

accept()

connect()

W

bind()

W

[SYN] [ACK/SYN] [ACK]

D

Delegate socket D
Created (Connected)

C

Client socket
Created

write()

read()

write()read()

close() close() Delegate socket
Closed

Welcome Socket
Still ready for
New connections

W

Not strictly
necessary

C

Client socket
Connected

C

C

D

D

Reliable data
Transfer

Stream socket
Created

Socket address
Applied

W

C

listen() call for the
Welcome socket

• Server and client

• read() and write() system
calls do result convenient
with stream sockets

o - The file descriptor
represents the TCP connection

o - Writing means sending from
the side that calls write() to
the other side

o - Reading is exactly the
opposite

V 1.5 26/11/19

All rights reserved © 2019 José María Foces Morán and José María Foces Vivancos

39

Client Server

socket()

bind()

listen()

request

Server finished
With client’s
requestclient finished

socket()

response

Socket becomes a
Welcome socket W

accept()

connect()

W

bind()

W

[SYN] [ACK/SYN] [ACK]

D

Delegate socket D
Created (Connected)

C

Client socket
Created

write()

read()

write()read()

close() close() Delegate socket
Closed

Welcome Socket
Still ready for
New connections

W

Not strictly
necessary

C

Client socket
Connected

C

C

D

D

Reliable data
Transfer

Stream socket
Created

Socket address
Applied

W

C

