
V 1.0 All rights reserved © 2024 by José María Foces Morán and José María Foces Vivancos

All rights reserved © 2024 by José María Foces Morán and José María Foces Vivancos 1

Universidad de León
School of Industrial, Computer and Aerospace Engineering
Course on Distributed Systems and Networks

Homework #1: Introduction to Distributed Systems

Submit a single .zip file containing your solutions to the HW exercises. Only .pdf
and .c files are accepted. Submit via agora by 21:00 on Friday, 27th-September-2024.

Exercises

1. Introduction to Distributed Systems

1. What is a distributed system made of?

Distributed Systems are made of processes that communicate with each other
by exchanging messages. Those processes run on operating systems like Linux
and the communication is made possible by way of Internet stacks
implemented in them.

2. Interpret the meaning of this phrase: “The TCP protocol makes omission
faults transparent to applications”

An omission fault happens whenever a system will not provide a response to a
given request that it received earlier. Consider a client host that sends some
information to a server host, if this information is lost amid its trip to the
server, then, Internet has committed an omission fault, because that fault will
hinder the server from ever sending back to the client the response. The TCP
protocol compensates for these faults by using a number of mechanisms known
as ARQ, or Automatic Repeat Request. These mechanisms, in TCP, are based
on the use of positive and cumulative acknowledgements. Ultimately, TCP
affords that application programmers be oblivious about the happening of
omission faults. In other words, TCP makes those faults transparent to
application programmers.

2. UDP

1. Download the script to the practical that we did on week #39, titled
“Practical on CS with datagram sockets in C” (The link that points to it is
http://paloalto.unileon.es/ds/lab/udpcsscript.pdf) and redo
exercise 1 in your own Linux host, at your home and having no Internet
connectivity. Explain each step you take alongside the final tcpdump
trace.

Turn off network interfaces (Ethernet, Wifi, Bluetooth). Execute the server at
TCP port 60000, for example. Then, run the client and enter the server IP

V 1.0 All rights reserved © 2024 by José María Foces Morán and José María Foces Vivancos

All rights reserved © 2024 by José María Foces Morán and José María Foces Vivancos 2

address as 127.0.0.1 (Usually, this is your localhost) and port 60000. If you
wish, you can capture the generated IP traffic with tcpdump -i 127.00.1, etc.
Note that, in this case, the traffic will remain confined in the host’s stack, in
which, IP will forward the received packets back to the same stack by using the
localhost IP interface.

2. Extend the echoServerBase.c and the echoClientBase.c from the
practical mentioned in the previous exercise such that the server returns
the actual loop’s iteration number (An int, which in C, under a
mainstream platform is represented with 32 bits) along with the data
that should be echoed back to the client.

The client should, as well, access that integer when received and have it
properly printed out. The loop’s source code is located at line number 62,
and the counter is represented in an int variable which name is counter.
To simplify your work, the following empty function has been included in
the source code:

void appendCounter(char *buffer, unsigned int counter, unsigned int *nbytes){
}

Function appendCounter(), receives all of the parameters necessary for
appending the value of counter to the buffer that is to be returned to the
client. Consequently, you must code your solution within function
appendCounter(), exclusively. In Computer Networks we reviewed how to
send an integer over a socket (Functions htonl() and ntohl()).

Extend the client’s code so that it prints the iteration number out every
time it sends a new request to the server.

The server program executes a basic loop where it receives a message and
computes and sends back the response. In this exercise, you must modify the
server so that it sends back the iteration number in which the response will be
sent back. The integer that represents the iteration counter must be translated
from the internal byte-ordering used by the specific processor architecture
used by the server (Little Endian or Big Endian) to Network Byte order, the
ordering used by networks, which is exactly like the Big Endian. Functions
htonl() and ntohl() automate these marshalization processes in a consistent
way.

The client, when it receives the new response format, which contains the
iteration counter, must print it out on the screen, but, consistently with the
above explanation, the client should translate the integer to the internal
ordering in use in its processor architecture.

