
6th-Nov-2024 V2.0 All rights reserved © 2024 by José María Foces Morán and
José María Foces Vivancos from book Conceptual Computer Networks

All rights reserved © 2024 by José María Foces Morán and José María Foces Vivancos
from book Conceptual Computer Networks

1

1

Course on Distributed Systems at Universidad de Leon

School of Industrial, Computer and Aerospace Engineering

DSPro
Independent Study Exercises on Distributed Systems

General guidelines for solving the exercises

• Each exercise is worth 0,20 points out of a total of 1,00 points which is the credit
assigned to this homework this academic year (2024-2025). You have no obligation
to submit the solutions to all of the exercises; any part thereof will count if properly
explained and developed. The mentioned credit does not contribute to the passing mark
of the course, that is the sense in which this practice is named optional.

• Some exercises require remote access to host paloalto.unileon.es.

• The right to submit DSPro and that it be assessed is only granted to those students
who have attended the practical lab sessions regularly.

• Program sources must be clearly commented.

• Apply a simple OO design strategy, or structured programming strategy
depending on the specific language used in each case in this homework (Java or C,
respectively).

• Include rich explanations of your design decisions and the unit tests that check the

correction of your programs.

• Only your original work, produced personally by you should be submitted. You
can incorporate source code from open software projects, in which case you must
cite the authors and their overall weight in your project must be small.

• Submit the solution to each exercise in a separate folder which name must be

“Exercise 1“, “Exercise 2”, etc. Each directory may contain C source files, Java

6th-Nov-2024 V2.0 All rights reserved © 2024 by José María Foces Morán and
José María Foces Vivancos from book Conceptual Computer Networks

All rights reserved © 2024 by José María Foces Morán and José María Foces Vivancos
from book Conceptual Computer Networks

2

2

source files, zip-compressed files, .mk (make build utility) files, .ant (Java ant build
tool), or .pdf documentation files.

• Be sure to include the build files that you have used in your project, written either

in make, gmake or in Ant.

• Compress the solution to all of the exercises (Their whole file hierarchy) in a single
.zip file (Only .zip is acceptable!!!)

• Compress the complete folder structure mentioned above in a .zip file (Please, use

.zip exclusively, otherwise, I might not be able to decompress the archive which
might compromise my assessing your work, altogether).

• Submit the zip-compressed archive to the agora task titled Homework #4: DS Pro
2024:

o Publication date: 6th-November-2024 at 17:00
o Submission deadline: 20th-November-2024 21:00

Figure 1. Agora task for DSPro 2024. The homework statement will be available at

17:00 on that date

1. New ping utility for Linux

i. Develop a ping utility for the Linux operating system in C based on
ICMP echo messages. The utility should at least offer the following
functionality:

a. Send a request every 10 seconds for a period of 1 hr

b. Printout the Rtt to each request/response cycle

c. A brief Rtt statistics, including the number of lost packets, the min

Rtt, the max Rtt, the avg Rtt and the Rtt variance

d. Exclusively use host 193.146.101.46 for your unit tests

ii. Explain the greatest difficulties that you have got into in developing this

program

6th-Nov-2024 V2.0 All rights reserved © 2024 by José María Foces Morán and
José María Foces Vivancos from book Conceptual Computer Networks

All rights reserved © 2024 by José María Foces Morán and José María Foces Vivancos
from book Conceptual Computer Networks

3

3

iii. Apply a modular and structured programming methodology and have
your code appropriately commented.

iv. Draw the protocol stack used by your application-layer tool. Explain the

detailed semantics to the box representing your protocol.

2. Some routers filter ICMP Timestamp Requests

The ICMP Timestamp message, when sent from clients over Internet, may not
eventually be delivered to their destination host (A server) because some of the
routers comprising the path to it, would drop ICMP Timestamp Requests. This
filtering is configured by network administrators as a cyber security measure,
which context is beyond this course scope.

In this exercise, we ask you to suggest reasonable, sensible and feasible strategies for
circumventing this security restriction.

You might start with observing the similitude between the ICMP headers to the
echo messages (Those used by the ping utility) and those to the ICMP timestamp
messages, and by carefully studying the RFC to the ICMP protocol.

i. What would be necessary for passing timestamp requests/replies as
simple ICMP echo and echo replies?

ii. Discuss how you would develop a server program that would treat our
ICMP echo messages as timestamp requests and then respond to them
accordingly.

iii. Explain your strategy for programing this in C, notice however that no

actual programming is expected as the solution to this exercise.

iv. Is solving the preceding question possible at all? Discuss whether or not
it would be possible to have a server program receive IP Protocol 1
(ICMP) messages. Recall that those messages are handed to Linux’s
ICMP protocol module.

v. Now, write a program that creates a PF_INET/RAW_SOCK socket for

receiving ICMP echo messages and have them printed out. Your
program should send back no ICMP responses. Check your program in
your own Linux PC by sending it ICMP echo requests with the Linux
ping utility and using localhost (Usually 127.0.0.1) as the destination IP
address.

6th-Nov-2024 V2.0 All rights reserved © 2024 by José María Foces Morán and
José María Foces Vivancos from book Conceptual Computer Networks

All rights reserved © 2024 by José María Foces Morán and José María Foces Vivancos
from book Conceptual Computer Networks

4

4

3. Simple probabilistic time synchronization algorithm

Using ICMP timestamp request and response messages, build a C program that
synchronizes its host’s clock (The client) with the clock of host 193.146.101.46 (The
server).

Initially, the client program will measure the Rtt to the server host for a period of 5
min at every 10 seconds. Along this loop, the program must compute the
minimum Rtt observed so far and keep this minimum Rtt.

After computing the minimum Rtt, the program will start a loop of 100 ICMP
Timestamp requests to the server, each separated 5 seconds to the next one. In
each, the server must measure the Rtt and whenever it is less than the minimum,
the program should synchronize the local clock and printout the maximum
synchronization error achieved. This synchronization algorithm is due to the late
Flaviu Christian. Using his own words, this algorithm is probabilistic.

i. Why is it the case that Christian used the term probabilistic in his
original research paper? The paper can be downloaded from within the
Unileon virtual campus, and not from paloalto.unileon.es, due to
copyright-related regulations. You can fetch the paper from the folder
associated with the DS-Pro agora task (SpringerChristianAlgorithm.pdf,
which was downloaded from its publisher website, Springer, by using
the institutional Universidad de Leon subscription.

ii. Procedure for allowing your time sync client to hand ICMP Timestamp
requests over to host 193.146.101.46.

The networks that comprise the paths to host paloalto.unileon.es
(193.146.101.46) filter ICMP message types 13 and 14 (ICMP Timestamp
Request and Response), thereby hindering any form of clock sync based on
that protocol. A number of strategies are available to circumvent that
limitation of which I have chosen the creation of an end-to-end ssh-based
tunnel. These ssh tunnels allow a client application to communicate with the
server on the other end by transparently encrypting the messages generated
by the client, and ultimately having those ssh-encrypted, client-generated
messages decrypted by the receiving ssh server and finally handed up to the
server application (The kernel-implemented ICMP server). Ultimately, the
protocol stack, supplemented at each side with the SSH protocol, enables
transparent communication between client and server as though no network
stood between the two.

6th-Nov-2024 V2.0 All rights reserved © 2024 by José María Foces Morán and
José María Foces Vivancos from book Conceptual Computer Networks

All rights reserved © 2024 by José María Foces Morán and José María Foces Vivancos
from book Conceptual Computer Networks

5

5

Overall, the low-level detail about ssh tunnels is beyond the scope of our
course, consequently, we’ll simply deploy the tunnel and use it as what it turns
out to be: a virtual interface to a point-to-point network that transparently
communicates your local host and 193.146.101.46, the target host. Thus, the
ICMP packets generated by your clock sync client (By way of an IP RAW_SOCK)
will travel encapsulated into SSH-encrypted messages which will not be filtered
–hopefully.

Each student will be assigned a number from 1 to 75. That number is
exclusively assigned to each student and is the only number that they should
use in the resolution of the present homework.

1. Find your personal number in the table contained in following file by

looking up the last 5 digits of your National ID (DNI):

$ wget paloalto.unileon.es/ds/tunnels/stnumbers.pdf

Notice, henceforth, your personal number will be denoted as N throughout
this document.

2. The passphrase used in the creation of all of the private keys is:

“tun-ssh-ds2024”

You’ll be asked for this passphrase later at some point in the progress of
this procedure.

3. Switch to super-user, either by issuing su or sudo, depending on your
specific configuration. Download your exclusive private key file, which
name is id_tun<N>_rsa. You must replace the mandatory field <N> for your
own personal number. For example: assuming that your personal number is
35, then you would download your personal private key file by executing
this command:

wget paloalto.unileon.es/ds/pvkeys/id_tun35_rsa

4. Continuing by assuming that your student number is 35, now, set the

correct file permissions for the private key file:

chmod 600 id_tun35_rsa

5. Download the shell (Bash) shell script that creates the virtual interface
making up this side of the point-to-point network to 193.146.101.46:

6th-Nov-2024 V2.0 All rights reserved © 2024 by José María Foces Morán and
José María Foces Vivancos from book Conceptual Computer Networks

All rights reserved © 2024 by José María Foces Morán and José María Foces Vivancos
from book Conceptual Computer Networks

6

6

wget http://paloalto.unileon.es/tunnels/student_tun.sh

6. Download the bash script that configures the newly created tun, virtual

interface:

wget http://paloalto.unileon.es/tunnels/student_link.sh

7. Add the execution attribute to the two files that you just downloaded:

chmod +x student*.sh

8. Before continuing with this procedure, check that you have end-to-end
connectivity with 193.146.101.46 (paloalto.unileon.es) by using the ping
utility:

ping 193.146.101.46

Check that you are receiving echo backs

9. Create the ssh tunnel to 193.146.101.46; ascertain that you are super-user.
We keep using 35 as our example student number (Replace it for that
which is your actual number!):

./student_tun.sh 35

If no error is issued by this command, the terminal will look idle, and that is
the normal behavior at this point (See fig. 2). Leave that terminal in that
state, now. Here, I show what happened in my own Linux, at home:

Figure 2. Idle terminal after creation of the ssh tunnel

10. Request a new terminal and switch to super-user on it (su or maybe sudo),
then, execute ifconfig tun35 to check the state of the created interface.

ifconfig tun35

6th-Nov-2024 V2.0 All rights reserved © 2024 by José María Foces Morán and
José María Foces Vivancos from book Conceptual Computer Networks

All rights reserved © 2024 by José María Foces Morán and José María Foces Vivancos
from book Conceptual Computer Networks

7

7

Figure 3. A new super-user terminal printing out the state of interface
tun35

Observe that interface tun35 is not UP. We bring it up in the next step.

11. Execute script student_link.sh to configure the brand new, virtual network
interface (tun35 in this example). Again, I show you what happened in my
own home system:

./student_link.sh 35

Figure 4. The lower terminal configures tun35 and checks the tunnel

12. After successfully setting up the tunnel, your Linux stack has a new IP
interface tun35 that allows your host to communicate with 193.146.101.46,
transparently by using these two IP addresses:

- Your local IP address is 192.168.135.123
- Your remote IP address is 192.168.135.1

Notice that if your N=35, your local IP address is 192.168.135.123 and the
remote is 192.168.135.1. Be careful to use your correct and exclusive IP
addresses, as much for the client as for the server, as explained above.

iii. Procedure for finally checking your time sync client program:

a. Download the base .c source file included in the time sync practical.

6th-Nov-2024 V2.0 All rights reserved © 2024 by José María Foces Morán and
José María Foces Vivancos from book Conceptual Computer Networks

All rights reserved © 2024 by José María Foces Morán and José María Foces Vivancos
from book Conceptual Computer Networks

8

8

That program, as I demonstrated in the practical lab session in Lab
B6, computes the correction necessary for the local clock to be in sync
with the specified host’s clock and prints it out. Optionally, the
program can enforce the correction upon the local clock (Option -w).

This .c source file is your basis code for implementing the Christian’s
algorithm.

b. Compile the program and run it in a new terminal. Switch to super-
user, before running it. Also, make sure that the tunnel, for student
35 that we created above is up and running.

wget http://paloalto.unileon.es/ds/lab/icmptimestamp.c

gcc -o mytimesync icmptimestamp.c

./ mytimesync 192.168.135.1

See the illustration in fig. 5

Figure 5. Illustration of results of running the basic time sync
program

Observe that the offset between the local and the remote clocks is
quite large: 4770,770 seconds. The reason is that I artificially set a
time at the client quite different than the time set at the server, for the
illustration purposes. See fig. 6.

In summary, the provided .c code allows you to send an ICMP
TimeStamp Request, receive the ICMP TS response, calculate the Rtt
and printout the offset between the two clocks. This is the code that
you’ll extend for implementing the Christian’s algorithm. Note that
before the program can adjust the local time, you will have to stop
the NTP client that must be running in your host. If you don’t stop
NTP, then your local clock will be roughly in sync with the
timeserver, and consequently, you’ll not be able to see the effect of

6th-Nov-2024 V2.0 All rights reserved © 2024 by José María Foces Morán and
José María Foces Vivancos from book Conceptual Computer Networks

All rights reserved © 2024 by José María Foces Morán and José María Foces Vivancos
from book Conceptual Computer Networks

9

9

your implementation of Christian’s algorithm. Continue to the next
step, then.

Figure 6. Artificially large offset between client (Blue background)
and the server (Black background).

c. Stop your NTP client altogether. This operation and changing the
clock entail your super-user credentials, thus you must switch to
super-user, now. Explain what you do to stop ntp by consulting the
time sync practical that we did in Lab B6 where we provided you
details about how to stop NTP.

d. Artificially set your local clock to 5 minutes ahead the current real

time. Highlight the Linux commands involved in setting that local
clock time.

e. Now, run the base .c (mytimesync) program so that it slows down

your clock. Soon, the local time will be in sync with the server’s.
Check this after 15 min, for example.

f. Now, repeat steps d and e above, but set your clock in sync by

running your implementation of Christian’s algorithm. Explain what
tests you will perform to prove that the program functions correctly.

4. RMI C/S application

Write a Java RMI client that checks access to two remote methods at the host at
your own Linux PC (IP address 127.0.0.1). The basic signatures to the methods
exported by the remote object are longStringHash(String) and factorial(int). The
server and the remote rmiregistry are deployed in your own server host, also.
Download the zip file containing the source tree and, afterwards unzip the zip
archive:

6th-Nov-2024 V2.0 All rights reserved © 2024 by José María Foces Morán and
José María Foces Vivancos from book Conceptual Computer Networks

All rights reserved © 2024 by José María Foces Morán and José María Foces Vivancos
from book Conceptual Computer Networks

10

10

1. You must have Java JRE and JDK installed.

2. Download zip from:

wget http://paloalto.unileon.es/ds/lab/ant.zip

3. Unzip the archive:

$ unzip ant; cd ant; ./install.sh

4. Skim the ant script file and use the clauses that run rmiregistry, deploy the
server and, finally check the client against the server.

5. Document the results that you have obtained.

5. Brief summary about transparencies, clocks, states and
faults in distributed systems.

Study the following summary of chapter no. 3 from the book “Foundations of Distributed
Systems, by Ian Gorton and published by O’Reilly (Copyright © 2022 Ian Gorton. All rights
reserved). Do a summary of that summary by remarking what you think is of paramount
importance and what you think that might inaccurate or somehow incomplete.

Figure 7. Summary of ch.3 from Foundations of Distributed Systems, by Ian Gorton and

published by O’Reilly (Copyright © 2022 Ian Gorton. All rights reserved) , part 1/2.

(Continued on next page)

6th-Nov-2024 V2.0 All rights reserved © 2024 by José María Foces Morán and
José María Foces Vivancos from book Conceptual Computer Networks

All rights reserved © 2024 by José María Foces Morán and José María Foces Vivancos
from book Conceptual Computer Networks

11

11

Figure 8. Summary of ch.3 from Foundations of Distributed Systems, by Ian Gorton and

published by O’Reilly (Copyright © 2022 Ian Gorton. All rights reserved), part 2/2.

(End of document)

